Life Cycle Assessment of a 100% Australian-Cotton T-Shirt

Institute for Sustainable Resources
Queensland University of Technology
2009
Life Cycle Assessment

- Includes production of raw materials, product assembly, use and disposal
- Includes environmental impact from producing inputs (petrol, buildings, fertilisers, etc)
- Identifies environmental hotspots
- Quantitative and scientific basis
The Study

• Main Focus:
 – GHG emissions
 – Fossil fuel depletion

• Goals:
 – Market communication
 – Identify GHG reduction possibilities in the production and manufacturing chain
Environmental Categories

• Climate Change -> Direct GHG emissions
 – Soil N$_2$O emissions
 – Cattle CH$_4$ emissions (if applicable)
 – Plant and soil decomposition (CO$_2$)

• Fossil Fuel Depletion
 – Burning of fuel for machinery (production and manufacturing)
 – Burning of coal to produce electricity
 – Use of crude oil as input material (fertilisers, polyester)
Other Environmental Categories

• Ozone Layer Depletion
 – Emission of CFCs or other ozone depleting substances

• Mineral Resources Depletion
 – Depletion of phosphorus
 – Depletion of uranium
Cotton Production Carbon Footprint

- Carbon Footprint: 3.3 kg CO$_2$e/kg cotton
On-Farm GHG Emissions

• Assume Standard N fertiliser 200 kg N/ha
 + 0.101 kg CO$_2$e/kg cotton

• On-farm use of fuel
 + 0.15 kg CO$_2$e/kg cotton

• Cotton plant absorbs CO$_2$
 - 0.567 kg CO$_2$e/kg cotton

Net On-farm Emissions are -0.279 kg CO$_2$e/kg cotton
Polyester Production

• Why is polyester worse for the environment?
 – Synthetisation requires significant amounts of energy
 – Based on Xylene -> Crude Oil
 – Oil extraction and export very energy-demanding and contaminating
Polyester Carbon Footprint

• Carbon Footprint: 20 kg CO₂e/kg polyester
Cotton vs. Polyester

- Overall, cotton is better for the environment than polyester
- Estimated GHG emissions from production:
 - Cotton: 4 kg CO$_2$e/t-shirt
 - Polyester: 5kg CO$_2$e/t-shirt
The Textile Manufacturing Phase

- Contributes 12.5 kg CO$_{2}$e/kg textile
The Use Phase

- Dominates the Life Cycle -> 75 wash-dry operations
 - 96% of whole of life-cycle impact (277 kg CO$_2$e/t-shirt)
Reliability of Results

• High reliability
 – Specific and accurate sources
 – Use of reliable LCA databases

• Need to understand the goal of the study
 – Not about how much better cotton is
 but about which product is clearly better
 – Figures of GHG emissions are approximate
How to make cotton production greener

- Improve fertiliser efficiency and management
- Reduce diesel consumption

Which by-products offer more biofuel production?
Future Research

• Improve accuracy
• Assess other environmental categories
 – Water use (water depletion, water contamination...)
 – Land use (biodiversity, soil salinisation...)
• GHG reduction options
• How to maximise environmental benefits from cotton by-products